과소적합1 Hands-on ML : 4. 3 다항회귀 및 4.4 학습곡선 4.3 다항회귀 import numpy as np import matplotlib.pyplot as plt m = 100 X = 6 * np.random.rand(m,1) - 3 y = 0.5 * X**2 + X + 2 + np.random.randn(m,1) # 약간의 노이즈 포함 plt.plot(X,y,"b.") plt.show() 사이킷런의 PolynomialFeatures를 사용하여 훈련 데이터를 변환 from sklearn.preprocessing import PolynomialFeatures poly_features = PolynomialFeatures(degree=2, include_bias=False) X_poly = poly_features.fit_transform(X) print(X[0.. 2022. 5. 19. 이전 1 다음