본문 바로가기
  • 데이터에 가치를 더하다, 서영석입니다.

경사하강법2

Hands-on ML : 4. 2 확률적 경사하강법, 미니배치 경사 하강법 배치 경사 하강법 문제점 배치 경사 하강법의 문제는 매 스텝에서 전체 훈련 세트를 사용해 그레디언트를 계산한다는 것이다. 훈련 세트가 커지면 매우 느려지는 이유로 확률적 경사하강법을 사용한다. 확률적 경사하강법 매 스텝에서 한 개의 샘플을 무작위 선택하고 그에 대한 그레이디언트를 계산한다. 매 반복에서 적은 데이터를 처리하기에 속도가 매우 빠르며, 1개 샘플에 대한 메모리만 필요하므로 매우 큰 훈련 데이터 셋도 가능하다. 반면에 확률적이기에 배치 경사 하강법보다 불안정하다는 단점이 있다. 또한 매끄러운 하강이 아닌 요동치는 것을 볼 수 있는데, 요동치는 것은 지역 최솟값을 뛰어넘어서 전역 최솟값을 찾게 도와줄 수 있다. 학습률이 너무 천천히 줄어들면 오랫동안 최솟값 주변을 맴돌거나 지역 최솟값에 머무를 .. 2022. 5. 18.
Hands-on ML : 4. 2 경사 하강법 경사 하강법 (gradient descent) 최적의 해법을 찾을 수 있는 일반적인 최적화 알고리즘 아이디어 : 비용 함수를 최소화하기 위해 반복해서 파라미터 조정해가는 것. 제시된 함수의 기울기로 최소값을 찾아내는 머신러닝 알고리즘 1. 특정 파라미터 값으로 시작 : 가중치 W1에 대한 시작점을 선택한다. 2. 비용 함수 (Cost function) 계산 : 모델을 구성하는 가중치 W의 함수 3. 반복 학습 (iteration) : 과정을 n번 반복하며 최소값으로 수렴. (스텝의 크기가 중요) -> numeric analysis에서의 수치적 접근법과 같다. ( ex) Bisection algorithm etc..) 4.2.1 배치 경사 하강법 경사 하강법을 구현하기 위해 각 모델 파라미터에 대한 비용 .. 2022. 5. 17.