연구 활동/이상 탐지 프레임워크 설계8 [이상치 탐지] EDA for data(2min) 본 센서는 ver1,ver2,ver3으로 구성되어있으며 가스를 측정하는데 있어 주기가 2분인 센서의 데이터를 가져왔다. 'AI 데이터 연구단'에서 자체적으로 개발한 센서이며 , TVOC,CO2,미세먼지 등 실내 공기의 질을 측정하는 센서이다. 데이터를 측정하는 센서에 따라 시간의 주기가 맞지 않을 때가 있다. 보통 시간의 주기를 1min으로 하면 센서의 시간에 따른 정교성이 부족하다면. 1분 5초에 따라 측정할 수도 있고, 1분 10초 마다 센서로 측정할 수 있어 이를 조정해주는 작업이 필요하다. .. 센서를 정교하게 잘 만든다면 이런 일이 안벌어지지 않을까..?? 이 부분은 결함이 일어날 수도 있다고 생각하고 EDA를 진행하였다. 본 데이터는 2분마다 가스를 측정하는 센서로 TS2,CH2O, 미세먼지 .. 2022. 4. 28. 이상치 탐지] 논문 리뷰 -(4)Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems Deep-Compact- Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems 본 논문은 MDPI 논문이며, sensors 저널에 등록된 논문이다. Impact Factor는 4.35이며, Unsupervised anomaly detection으로 클러스터링을 이용한 이상값 감지 방법론이다. 또한 LSTM을 기반으로 한 Autoencoder을 쓰기에 이상치 탐지에 적합하다고 생각했다. 4.3. DAECC-OC-SVM Performance Discussion 제안된 이상 탐지 방법의 효율성을 이해하기 위해 행동과 성능을 보여주는 몇 가지 추가 테스트가 제공된다. 이를 위해 먼저 방법론의 핵심, 즉 DAE의 특성화.. 2022. 3. 11. 이상치 탐지] 논문 리뷰 -(3)Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems Deep-Compact- Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems 본 논문은 MDPI 논문이며, sensors 저널에 등록된 논문이다. Impact Factor는 4.35이며, Unsupervised anomaly detection으로 클러스터링을 이용한 이상값 감지 방법론이다. 또한 LSTM을 기반으로 한 Autoencoder을 쓰기에 이상치 탐지에 적합하다고 생각했다. 아래 그림은 DAECC-DC-SVM 방법의 틀로서, 제안된 이상 탐지 모니터링 방법론의 단계별 흐름도이다. 3. Methodology 3.1. Data Acquisition 제안된 방법론의 첫 번째 단계는 회전 시스템의 상태와 관.. 2022. 3. 10. 이상치 탐지] 논문 리뷰 -(2) Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems Deep-Compact- Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems 본 논문은 MDPI 논문이며, sensors 저널에 등록된 논문이다. Impact Factor는 4.35이며, Unsupervised anomaly detection으로 클러스터링을 이용한 이상값 감지 방법론이다. 또한 LSTM을 기반으로 한 Autoencoder을 쓰기에 이상치 탐지에 적합하다고 생각했다. 2. Theoretical Background 클러스터링은 기계 학습 및 데이터 마이닝과 관련된 주제이다. 비선형 표현을 학습하는 탁월한 능력으로 인해 심층 신경망이 빠르게 성장함에 따라 최근 연구에서는 클러스터링 작업을 위한 좋.. 2022. 3. 8. [이상치 탐지] 논문 리뷰 - Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems 본 논문은 MDPI 논문이며, sensors 저널에 등록된 논문이다. Impact Factor는 4.35이며, Unsupervised anomaly detection으로 클러스터링을 이용한 이상값 감지 방법론이다. 또한 LSTM을 기반으로 한 Autoencoder을 쓰기에 이상치 탐지에 적합하다고 생각했다. 0. Abstract 산업 부문의 급속한 성장은 보다 생산적이고 신뢰할 수 있는 기계의 개발을 요구했으며 따라서 복잡한 시스템으로 이어진다. 이와 관련하여 기계에서 알려지지 않은 이벤트를 자동으로 감지하는 것은 특성화되지 않은 치명.. 2022. 3. 7. [이상치 탐지] 논문리뷰 -(요약) A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data 본 포스팅은 비지도학습이며 이상치 탐색, 시계열이라는 세가지 키워드를 가진 논문이다. 앞으로 진행할 이상치 탐색에 있어서 필요한 논문이며 AAAI-19에서 발행된 논문이다. Summary 데이터 셋 Synthetic dataset , power plant dataset : Unsupervised학습 시, normal data 이용 및 검증으로는 이상치를 넣는다. Reconstruction을 이용하고 Forecasting을 이용하지 않는다. Input : time windows : 3개 ( short(10), medium(.. 2022. 3. 6. 이전 1 2 다음