unsupervised1 LSTM-AE_for_Unsupervised_Outlier_Detection An innovative framework for indoor air quality outlier detection, comprising three modules: LSTM-AE-based reconstruction error detector, latent feature class-assisted SVM detector, and an ensemble model for robust real-time anomaly detection. Ideal for industrial applications, providing stable and versatile outlier decision rules.Remark : http://doi.or.kr/10.1186/s40537-023-00746-zIntroductionTh.. 2023. 11. 20. 이전 1 다음