본문 바로가기
  • 데이터에 가치를 더하다, 서영석입니다.

인공 신경망2

[딥러닝 자연어처리] 8-4. (4.) 역전파 이해하기 - (5) 과적합을 막는 방법들 딥러닝을 이용한 자연어처리 입문 # 8-4. (4.3) 역전파 이해하기 - (5) 과적합을 막는 방법들 4.3 역전파 이해하기 1) 인공 신경망의 이해 예시 인공 신경망 = 입력층, 은닉층, 출력층으로 3개의 층으로 구성 변수 z = 이전층의 모든 입력이 각각 가중치와 곱해지 값이 모두 더해진 가정합. z를 지난 h or o = z가 시그모이드 함수를 지난 후의 값 2) 순전파 3) 역전파 1단계 출력층과 N층 사이의 가중치를 업데이트하는 단계 → 역전파 1단계로 이해가능 4) 역전파 2단계 5) 결과 확인 이후 실제로 순전파를 다시 한 번 진행해 오차가 감소되었는 지를 확인 5. 과적합을 막는 방법들 1) 데이터의 양 늘리기 1차원적으로 데이터 양을 늘릴 수록 데이터는 일반적인 패턴을 학습하기 때문에 .. 2023. 12. 19.
[딥러닝 자연어처리] 8. 1) 퍼셉트론 ~ 2) 2. 인공 신경망 훑어보기 딥러닝을 이용한 자연어처리 입문 # 8. 1) 퍼셉트론 ~ 5) 인공 신경망 훑어보기 1. 퍼셉트론 가중치의 값이 크면 해당 입력값이 중요하다고 의미하고, 각 입력값에 각각의 가중치를 곱해줘서 y로 출력해주는 것 if sum(xiwi) > 임계치 → y = 1, 작은 경우 0으로 출력. 임계치를 좌변으로 넘겨 편향 b로 표현도 가능. b또한 퍼셉트론 입력으로 사용 이런 식으로 값을 넘게 되면 y를 1, 아니면 0으로 이해한다. 출력값을 변경시키는 함수 → 활성화 함수 퍼셉트론은 이를 계단 함수로 用, 이후엔 다양한 활성화 함수 이용됨. 시그모이드 or 소프트맥수 함수 또한 이의 일부분. 퍼셉트론에서 활성화 함수만 시그모이드 함수로 바꿔주면 로지스틱 회귀랑 동일해지는 것을 알 수 있음 단층 퍼셉트론 값을 .. 2023. 12. 14.