본문 바로가기
  • 데이터에 가치를 더하다, 서영석입니다.

신경망2

[딥러닝 자연어처리] 9-1. (01) 순환 신경망 (Recurrent Neural Network) 딥러닝을 이용한 자연어처리 입문 #9-1. (01) 순환 신경망 (1) 순환 신경망 (Recurrent Neural Network) 피드포워드 신경망의 한계점: 입력의 길이가 고정되어 있음 이를 해결하기 위한 방법으로 순환 신경망이 사용됨 RNN: 은닉층의 노드에서 활성화 함수를 통해 나온 결과값을 출력층 방향으로도 보내면서, 다시 은닉층 노드의 다음 계산의 입력으로 보냄 셀(cell): RNN 은닉층에서 활성화 함수를 통해 결과를 내보내는 역할을 하는 노드 은닉 상태(hidden state): 메모리 셀이 출력층 방향 또는 다음 시점인 자신에게 보내는 값 (2) 케라스(Keras)로 RNN 구현하기 from tensorflow.keras.layers import SimpleRNN model.add(Si.. 2023. 12. 25.
[이상치 탐지] 논문리뷰 - A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data (2) A Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data 본 포스팅은 비지도학습이며 이상치 탐색, 시계열이라는 세가지 키워드를 가진 논문이다. 앞으로 진행할 이상치 탐색에 있어서 필요한 논문이며 AAAI-19에서 발행된 논문이다. 3. Characterizing Status with Signature Matrices 이전 연구는 서로 다른 시계열 쌍 간의 상관관계가 시스템 상태를 특성화 하는데 중요하다고 제안. t-w에서 t까지의 다변량 시계열 세그먼트에서 서로 다른 시계열 쌍 간의 상호 상관을 나타내기 위해 두 시계열의 쌍 별 내적을 기반으로 n x n 시그니처 행렬 Mt를 .. 2022. 3. 5.