본문 바로가기
  • 데이터에 가치를 더하다, 서영석입니다.

선형회귀3

[딥러닝 자연어처리] 7. 머신 러닝 개요 1) ~ 3) 딥러닝을 이용한 자연어처리 입문 # 7. 머신 러닝 개요 1) ~ 3) 1) 머신러닝이란 해결을 위한 접근 방식이 기존의 프로그래밍 방식과는 다름 머신 러닝은 데이터가 주어지면, 기계가 스스로 데이터로부터 규칙성을 찾는 것에 집중함 주어진 데이터로부터 규칙성을 찾는 과정을 훈련(training)또는 학습(learning)이라고 함 2) 머신 러닝 훑어보기 1. 머신 러닝 모델의 평가 학습하기 전에 데이터를 훈련용, 검증용, 테스트용 이렇게 세 가지로 분리함 훈련데이터: 머신 러닝 모델을 학습하는 용도 테스트데이터: 학습한 머신 러닝 모델의 성능을 평가하기 위한 용도 검증용데이터: 모델의 성능을 조정하기 위한 용도 → 모델이 훈련 데이터에 과적합이 되고 있는지 판단하거나 하이퍼파라미터의 조정을 위한 용도 .. 2023. 12. 11.
Hands-on ML : 4. 2 확률적 경사하강법, 미니배치 경사 하강법 배치 경사 하강법 문제점 배치 경사 하강법의 문제는 매 스텝에서 전체 훈련 세트를 사용해 그레디언트를 계산한다는 것이다. 훈련 세트가 커지면 매우 느려지는 이유로 확률적 경사하강법을 사용한다. 확률적 경사하강법 매 스텝에서 한 개의 샘플을 무작위 선택하고 그에 대한 그레이디언트를 계산한다. 매 반복에서 적은 데이터를 처리하기에 속도가 매우 빠르며, 1개 샘플에 대한 메모리만 필요하므로 매우 큰 훈련 데이터 셋도 가능하다. 반면에 확률적이기에 배치 경사 하강법보다 불안정하다는 단점이 있다. 또한 매끄러운 하강이 아닌 요동치는 것을 볼 수 있는데, 요동치는 것은 지역 최솟값을 뛰어넘어서 전역 최솟값을 찾게 도와줄 수 있다. 학습률이 너무 천천히 줄어들면 오랫동안 최솟값 주변을 맴돌거나 지역 최솟값에 머무를 .. 2022. 5. 18.
Hands-on ML : 4. 선형 회귀 및 계산 복잡도 (시간복잡도, 공간복잡도) 4.1 선형 회귀 (Linear regression) 4.1.1 정규방정식 (normal equation) 통계에서 일반 최소 제곱은 선형 회귀 모델에서 알려지지 않은 매개변수를 추정하기 위한 선형 최소제곱 방법의 한 유형 이를 파이썬으로 나타내보자. X=2*np.random.rand(100,1) y=4+3*X+np.random.randn(100,1) 정규방정식으로 Theta 구하기. X_b=np.c_[np.ones((100,1)),X] theta_best = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y) X_new=np.array([[0],[2]]) X_new_b=np.c_[np.ones((2,1)),X_new] y_predict=X_new_b.dot(theta_.. 2022. 5. 12.