배치 경사 하강법1 Hands-on ML : 4. 2 경사 하강법 경사 하강법 (gradient descent) 최적의 해법을 찾을 수 있는 일반적인 최적화 알고리즘 아이디어 : 비용 함수를 최소화하기 위해 반복해서 파라미터 조정해가는 것. 제시된 함수의 기울기로 최소값을 찾아내는 머신러닝 알고리즘 1. 특정 파라미터 값으로 시작 : 가중치 W1에 대한 시작점을 선택한다. 2. 비용 함수 (Cost function) 계산 : 모델을 구성하는 가중치 W의 함수 3. 반복 학습 (iteration) : 과정을 n번 반복하며 최소값으로 수렴. (스텝의 크기가 중요) -> numeric analysis에서의 수치적 접근법과 같다. ( ex) Bisection algorithm etc..) 4.2.1 배치 경사 하강법 경사 하강법을 구현하기 위해 각 모델 파라미터에 대한 비용 .. 2022. 5. 17. 이전 1 다음